8. POWERS AND EXPONTS
Question 1.
Simplify and give reasons
(i) 4-3
(ii) (-2) 7
(iii)
(iv) (-3)-4
Solution:
(i) 4-3
(ii) (-2) 7 = -(2) 7 = -128
[∵ 7 is an odd number]
[∵ (-a)n = -(an) if ‘n’ is odd]
(iii)
=
=
Question 2.
Simplify the following:
(i)
(ii) (-2)7 x (-2)3 x (-2)4
(iii) 44 x
(iv)
(v) (-3) 4 x 74
Solution:
(i)
[∵ am x an = am + n]
(ii) (-2)7 x (-2)3 x (-2)4
(-2)7 + 3 + 4 = (-2) 14 = 2 14
[∵ (-a)n = an is even]
(iii) 44 x
44 x
[ ∵
(iv)
5-4 x (56 x 53) [ ∵
= 5-4 x 56+3 [ ∵ am x an = (a)m+n
= 5-4 x 59
= 5(-4)+9 = 55
(v) (-3) 4 x 74
= 34 x 74[.4isevennumber]
=(3 x 7)4 [:amxbm=(ab)m]
= (21)4
Question 3.
Simplify
(i)
(ii) (4-1 x 3-1) ÷ 6-1
Solution:
(i)
= 22 x 22 x 32 x 3-1
= 22+2 x 32 + ( – 1)
=24 x 31 = 16 x 3 = 48
(ii) (4-1 x 3-1) ÷ 6-1
estion 4.
Simplify and give reasons
(i) (40 + 5-1) x 52 x
Solution:
(ii)
Solution:
=
=
= (40)3 [ ∵]
(iii) (2-1 + 3-1 + 4-1) x
Solution:
(iv)
Solution:
(v) 1 + 2-1 + 3-1 + 40
Solution:
(vi)
Solution:
Question 5.Simplify and give reasons
(i)
Solution:
=
(ii) ((52)3 x 54) ÷ 56
Solution:
Question 6.
Find the value of ’n’ in each of the following:
(i)
Solution:
Here bases are equal, so exponents are
also equal.
⇒ n – 2 = 8
⇒ n = 8 + 2 = 10
∴ n = 10
(ii) (-3)n+1 x (-3)5 = (-3)3
Solution:
⇒(-3)n+1+5 = (-3)-4 [∵ am x an = am+n ]
⇒ (-3)n+6 = (-3)-4
⇒ n + 6 = -4
⇒ n = -4 – 6 = -10
⇒ n = -10
(iii) 72n+1 ÷ 49 = 73
Solution:
⇒ 72n+1-2 = 73 [ ∵
⇒ 72n – 1= 73
⇒ 2n – 1 = 3
⇒ 2n = 3 + 1 = 4
⇒ n =
∴ n = 2
Question 7.
Find ’x’ if 2-3 =
Solution:
2-3 =
⇒ 2-3 = 2-x [
⇒ -x = -3
∴ x = 3
Question 8.
Simplify
Solution:
Question 9.
If m = 3 and n = 2 find the value of
(i) 9m2 – 10n3
(ii) 2m2 n2
(iii) 2m3 + 3n2 – 5m2n
(iv) mn – nm
Solution:
1) 9m2 – 10n3
= 9(3)2 – 10(2)3
= 9 x 9 – 10 x8
= 81 – 80 = 1
(ii) 2m2 n2
= 2(3)2 (2)2
= 2 x 9 x 4 = 72
(iii) 2m3 + 3n2 – 5m2n
= 2(3)3 + 3(2)2 – 5(3)2(2)
= (2 x 27) + (3 x 4) – (5 x 9 x 2)
= 54 + 12 – 90
= 66 – 90 = – 24
(iv) mn – nm
= 32 – 23
= 3 x 3 – 2 x 2 x 2
= 9 – 8 = 1
Question 10.
Simplify and give reasons
Solution: