8 th Algebraic Expressions

 Introduction

Expressions that contain only constants are called numeric or arithmetic expressions.

Expressions that contain only constants are called numeric or arithmetic expressions.

Expressions that contain constants and variables, or just variables, are called algebraic expressions. 

While writing algebraic expressions, we do not write the sign of multiplication. An algebraic expression 

containing only variables also has the constant 1 associated with it. The parts of an algebraic expression 

joined together by plus (+) signs are called its terms.

A term that contains variables is called a variable term.

A term that contains only a number is called a constant term. The constants and the variables whose

product makes a term of an algebraic expression, are called the factors of the term. The factors of a

constant term in an algebraic expression are not considered. The numerical factor of a variable term 

is called its coefficient. The variable factors of a term are called its algebraic factors.

Terms that have different algebraic factors are called unlike terms. Terms that have the same algebraic 

 

factors are called like terms. Algebraic expressions that contain only one term are called monomials. 

Algebraic expressions that contain only two unlike terms are called binomials. Algebraic expressions

that contain only three unlike terms are called trinomials. All algebraic expressions that have one or 

more terms are called polynomials. Therefore, binomials and trinomials are also polynomials.


Exercise 11.1

Question 1.

Find the product of the following pairs:
(i) 6, 7k
(ii) – 31, – 2m
(iii) -5t2 – 3t2
(iv) 6n, 3m
(v) – 5p2, – 2p
Solution:
The product of 6, 7k = 6 × 7k = 42k
ii) The product of – 3l, – 2m = (- 3l) × (- 2m) = 6/m
iii) The product of – 5t2, – 3t2 = (- 5t2) × (- 3t2) = 15t4
iv) The product of 6n, 3m = 6n × 3m = 18mn
v) The product of – 5p2, – 2p = (- 5p2) × (- 2p) = 10
p3

                   ClICK to get the app
Question 2.
Complete the table of the products.Solution:

AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.1 2

Question 3.
Find the volumes of rectangular boxes with given length, breadth and height in the following table.











ClICK to get the app

Question 4.
Find the product of the following monomials

(i) xy, x2y , xy, x
(ii) a, b, ab, a3 b, ab3
(iii) kl, lm, km, klm
(iv) pq ,pqr, r
(v) – 3a, 4ab, – 6c, d
Solution:
i) The product of xy, x2y, xy, x = xy × x2y × xy × x
= x5 × y3= x5y3

ii) The product of a, b, ab, a3b, ab3 = a × b × ab × a3b × ab3
= a6 × b6 = a6 b6

iii) The product of kl, lm, km, klm = kl × lm × km × klm
k3 × l3 × m3 =k3l3m3

iv) The product of pq, pqr, r = pq × pqr × r
= p2 × q2 × r2 – p2q2r2

v) The product of – 3a, 4ab, – 6c, d = (- 3a) × 4ab × (- 6c) x d
= + 72a2 × b × c × d
= 72a2bcd

ClICK to get the app

Question 5.
If A = xy,B = yz and C = zx, then find ABC=
Solution:
ABC = xy × yz × zx = x2y2z2


Question 6.
If P = 4x2, T = 5x and R = 5y, then PTR100 =

Solution:
PΓR100=4x2×5x×5y100=100x3y100 = x3 y

ClICK to get the app

Question 7.
Write some monomials of your own and find their products.
Solution:
The product of,some monomials is given below :
i) abc × a2bc = a3b2c2
ii) xy × x2z × yz2 = x3y2z3
iii) p × q × r = p3q3r3



Exercise 11.2

Question 1.
Complete the table:



Question 2.
Simplify: 4y(3y + 4)
Solution:

4y(3y + 4) = 4y × 3y + 4y × 4
= 12y2 + 6y


ClICK to get the app

Question 3.
Simplify x(2x2 – 7x + 3) and find the values of it for (i) x = 1 and (ii) x = 0
Solution:

x(2x2 – 7x + 3)
= x × 2x2 – x × 7x + x × 3
= 2x3 – 7x2 + 3x
= 3 × 3 – 1 × 3 – 3 × 1 + 1 × 1
=9 – 3 – 3 + 1 = 4
∴(a – b)2 = 4sq.units
[∵ (3 – 1)2 = 22 = 4]

 (a – b)2 = a2 – 2ab + b2
Area of ABCD + Area of CYZS
= a2 – 2ab + b2
area of ABCD – area of BXYC – area of DCST + area of CYZS
= 5 × 5 – 2 × 5 – 2 × 5 + 2 × 2
= 25 – 10 – 10 + 4
= 9 sq.units
[∵ (5 – 2)2 = (3)2 = 9]

ClICK to get the app

Question 4.
Add the product: a(a – b), b(b – c), c(c – a)

Solution:
a(a – b) + b(b – c) + c(c – a)
=a × a – a × b + b × b – b × c + c × c – c × a
=a2 – ab + b2 – bc + c2 – ca
=a2 + b2 + c2 – ab – bc – ca


Question 5.
Add the product: x(x + y – r), y(x – y+r), z(x – y – z)

Solution:
x(x + y – r) +y(x – y + r) + z(x – y – z)
= x2 + xy – xr + xy – y2 + yr + zx – yz – z2
= x2 – y2 – z2 + 2xy – xr + yr + zx – yz

Question 6.
Subtract the product of 2x(5x – y) from product of 3x(x+2y)

Solution:
3x(x + 2y) – 2x(5x – y)
=(3x × x + 3x × 2y)-(2x × 5x – 2x × y)
= 3x2 + 6xy – (10x2 – 2xy)
= 3x2 + 6xy- 10x2 + 2xy
= 8xy – 7x2

ClICK to get the app

Question 7.
Subtract 3k(5k – l + 3rn) from 6k(2k + 3l – 2rn)

Solution:
6k(2k + 3l – 2m) – 3k(5k – l + 3m)
= 12k2+ 18kl – 12km – 15k2 + 3kl – 9km
= -3k2 + 21kl – 21km

Question 8.
Simplify: a2(a – b + c) + b2(a + b – c) – c2(a – b – c)
Solution:
a2(a – b + c) + b2(a + b – c) – c2(a – b – c)
= a3 – a2b + a2c + ab2 + b3 – b2c – ac2 + bc2 + c3
= a3 + b3 + c3 – a2b + a2c + ab2 – b2c – ac2 – bc2


ClICK to get the app

Question 1.
Multiply the binomials:
(i) 2a – 9 and 3a + 4
(ii) x – 2y and 2x – y
(iii) kl + lm and k – l
(iv) m2 – n2 and m + n
Solution:
i) 2a – 9 and 3a + 4
(2a – 9) (3a + 4) = 2a (3a + 4) – 9(3a + 4)
= 6a2 + 8a – 27a – 36
= 6a2 – 19a – 36

ii) x – 2y and 2x – y
(x – 2y) (2x – y) = x(2x – y) – 2y(2x – y)
= 2x2 – xy – 4xy + 2y2
= 2x2 – 5xy + 2y2

ClICK to get the app

iii) kl + lm and k – l
(kl + lm) (k – l) = kl(k – l) + lm(k – l)
= k2l – l2k + klm – l2m

iv) m2 – n2 and m + n
(m2 – n2) (m + n) = m2(m + n) – n2(m + n)
= m3 + m2n – n2m – n3

ClICK to get the app

Question 2.
Find the product:
(i) (x + y)(2x – 5y + 3xy)
(ii) (mn – kl + km) (kl – lm)
(iii) (a – 2b + 3c)(ab2 – a2b)
(iv) (p3 + q3)(p – 5q+6r)
Solution:
i) (x + y) (2x – 5y + 3xy)
= x(2x – 5y + 3xy) + y(2x – 5y + 3xy)
= 2x2 – 5xy + 3x2y + 2xy – 5y2 + 3xy2
= 2x2 – 5y2 – 3xy + 3x2y + 3xy2

ii) (mn – kl + km) (kl – lm)
= kl(mn – kl + km) – lm(mn – kl + km)
= klmn – k2l2 + k2lm – lm2n + kl2m – klm2

ClICK to get the app

iii) (a – 2b + 3c) (ab2 – a2b) = a(ab2 – a2b) – 2b(ab2 – a2b) + 3c(ab2– a2b)
= a2b2 – a3b – 2ab3 + 2a2b2 + 3ab2c – 3a2bc
= 3a2b2 – a3b – 2ab3 + 3ab2c – 3a2bc

iv) (p3 + q3) (p – 5q + 6r) = p3(p – 5q + 6r) + q3(p – 5q + 6r)
= p4 – 5p3q + 6p3r + pq3 – 5q4 + 6rq3
= p4 – 5q4 – 5p3q + 6p3r + pq3 + 6rq3

ClICK to get the app

Question 3.
Simplify the following:
(i) (x-2y) (y – 3x) + (x+y) (x-3y) – (y – 3x) (4x – 5y)
(ii) (m + n) (m2 – mn + n2)
(iii) (a – 2b + 5c) (a – b) – (a – b – c) (2a + 3c) + (6a + b) (2c – 3a – 5b)
(iv) (pq-qr-i-pr) (pq-i-qr) – (pr-i-pq) (p-i-q – r)
Solution:
i) (x – 2y) (y – 3x) + (x + y) (x – 3y) – (y – 3x) (4x – 5y)
= (y – 3x) [x – 2y – (4x – 5y)] + (x + y)(x – 3y)
= (y – 3x) [x – 2y – 4x + 5y] + (x + y) (x – 3y)
= (y – 3x) (3y – 3x) + (x + y) (x – 3y)
= y(3y – 3x) – 3x(3y – 3x) + x(x – 3y) + y(x – 3y)
= 3y2 – 3xy – 9xy + 9x2 + x2 – 3xy + xy – 3y2
= 10x2 – 14xy

ii) (m + n) (m2– mn + n2)
= m(m2 – mn + n2) + n(m2 – mn + n2)
= m3 – m2n + n2m + nm2 – mn2 + n3
= m3 + n3

iii) (a – 2b + 5c) (a – b) – (a – b – c) (2a + 3c) + (6a + b) (2c – 3a – 5b)



= a(a – 2b + 5c) – b(a – 2b + 5c) – 2a(a – b – c) – 3c(a – b – c) + 6a(2c – 3a – 5b) + b(2c – 3a – 5b)
= a2 – 2ab + 5ac – ab + 2b2 – 5bc – 2a2 + 2ab + 2ac – 3ac + 3bc + 3c2 + 12ac – 18a2 – 30ab + 2bc – 3ab – 5b2
= – 19a2 – 3b2 – 34ab + 16ac + 3c2

iv) (pq – qr + pr) (pq + qr) – (pr + pq) (p + q – r)
= pq(pq – qr + pr) + qr(pq – qr + pr) – pr(p + q – r) – pq(p + q – r)
= p2q2 – pq2r + p2qr + pq2r – q2r2 + pqr2 – p2r – pqr + pr2 – p2q – pq2 + pqr
= p2q2 – q2r2 + p2qr + pqr2 – p2r + pr2 – p2q – pq 2

ClICK to get the app

Question 4.
If a, b, care positive real numbers such that a+bcc=ab+cb=a+b+ca ,find the value of (a+b)(b+c)(c+a)abc
Solution:
a+bcc=ab+cb=a+b+ca = k then
a+bcc = k ⇒ a + b – c = kc
⇒ a + b = (ck + c) = c(k + 1) …………… (1)
Similarly b + c = a(k + 1) ……………(2)
c + a = b(k + 1) ………………..(3)
AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3 1

Exercise 11.4

ClICK to get the app

Question 1.
Select a suitable identity and find the following products
(i) (3k + 4l)(3k + 4l)
(ii) (ax2 + by2)(ax2 + by2)
(iii) (7d – 9e)(7d – 9e)
(iv) (m2 – n2)(m2 + n2)
(v) (3t + 9s) (3t – 9s)
(vi) (kl – mn) (kl + mn)
(vii) (6x + 5)(6x + 6)
(viii) (2b – a)(2b +c)
Solution:
(3k + 4l) (3k 4l) = (3k + 4l)2 is in the form of (a + b)2.
=(3k)2 + 2 × 3k × 4l+ (4l)2 [ (a+ b)2 = a2 + 2ab + b2
= 3k × 3k + 24kl + 4l × 4l
= 9k2 + 24kl + 16l2

ii) (ax2 + by2) (ax2 + by2) = (ax2 + by2)2 is in the form of (a + b)2.
= (ax2)2 + 2 × ax2 × by2 + (by2)2 [ ∵ (a + b)2 = a2 + 2ab + b2]
= ax2 × ax2 + 2abx2y2 + by2 × by2
= a2x4 + 2ab x2y2 + b2y4

iii) (7d – 9e) (7d – 9e)
= (7d – 9e)2 is in the form of (a – b)2.
= (7d)2 – 2 × 7d × 9e + (9e)2 [ ∵ (a – b)2 = a2 – 2ab + b2]
= 7d × 7d – 126de + 9e × 9e
= 49d2 – 126de + 81e2

ClICK to get the app

iv) (m2 – n2) (m2 + n2) is in the form of (a + b) (a – b).
∴ (a + b) (a – b) = a2 – b2
∴ (m2 + n2) (m2 – n2) = (m2)2 – (n2)2 = m4 – n4

v) (3t + 9s) (3t – 9s) = (3t)2 – (9s)2 [ ∵ (a + b) (a – b) = a2 – b2 ]
= 3t × 3t – 9s × 9s
= 9t2 – 81s2

ClICK to get the app

vi) (kl – mn) (kl + mn) = (kl)2 – (mn)2 [ ∵(a + b) (a – b) = a2 – b2 ]
= kl × kl – mn × mn
= k2l2 – m2n2

vii) (6x + 5) (6x + 6) is in the form of
(ax + b) (ax + c).
(ax + b) (ax + c) = a2x2 + ax(b + c) + bc
(6x + 5) (6x + 6) = (6)2x2 + 6x (5 + 6) + 5 × 6
= 36x2 + 6x × 11 + 30
= 36x2 + 66x + 30

viii) (2b – a) (2b + c) is in the form of (ax – b) (ax + c).
(ax – b) (ax + c) = a2x2 + ax(c – b) – cb
(2b – a) (2b + c) = (2)2(b)2 + 2b (c – a) – ca
= 4b2 + 2bc – 2ab – ca

ClICK to get the app

Question 2.
Evaluate the following by using suitable identities:
(i) 3042
(ii) 5092
(iii) 9922
(iv) 7992
(v) 304 × 296
(vi) 83 × 77
(vii) 109 × 108
(viii) 204 × 206
Solution:
i) 3042 = (300 + 4)2 is in the form of (a + b)2.
∵ (a+b)2 = a2 + 2ab + b2
a = 300, b = 4
(300 + 4)2 = (300)2 + 2 × 300 × 4 + (4)2
= 300 × 300+ 2400 + 4 × 4
= 90,000 + 2400 + 16
= 92,416

ii) 5092 = (500 + 9)2
a  = 500, b = 9
= (500)2 + 2 × 500 × 9 + (9)2
[ ∵ (a + b)2 = a2 + 2ab + b2]
= 500 × 500 + 9000 + 9 × 9
= 2,50,000 + 9000 + 81
= 2,59,081

iii) 9922 = (1000 – 8)2
a = 1000, b = 8
= (1000)2 – 2 × 1000 × 8 + (8)2 [∵ (a-b)2 = a2 – 2ab + b2]
= 1000 × 1000 – 16,000 + 8 × 8
= 10,00,000 – 16000 + 64
= 10,00,064 – 1600
= 9,98,464

iv) 7992 = (800 – 1)2
a = 800, b = 1
= (800)2 – 2 × 800 × 1 + (1)2
= 800 × 800 – 1600 + 1
= 6,40,000 – 1600 + 1
= 6,40,001 – 1600
= 6,38,401


v) 304 × 296 = (300 + 4) (300 – 4) is in the form of (a + b) (a – b).
(a + b) (a – b) = a2 – b2
∴ (300 + 4) (300 – 4) = (300)2 – (4)2
= 300 × 300 – 4 × 4
= 90,000 – 16
= 89,984

vi) 83 × 77 = (80 + 3) (80 – 3)
= (80)2 – (3)2 [ ∵ (a + b) (a – b) = a2 – b2]
= 80 × 80 – 3 × 3
= 6400 – 9
= 6391

vii) 109 × 108 = (100 + 9) (100 + 8)
= (100)2 + (9 + 8)100 + 9 × 8
= 10,000 + 1700 + 72
= 11,772

viii) 204 × 206 = (205 – 1) (205 + 1)
= (205)2 – (1)2 [∵ (a + b)(a-b) = a2 – b2]
= 205 × 205 – 1 × 1
= 42,025 -1
= 42,024



ClICK to get the app













Post a Comment

Home page

Hardware and Software